Showing posts with label optimization. Show all posts
Showing posts with label optimization. Show all posts

Wednesday, July 27, 2011

Global Optimization Methods in Geophysical Inversion (Advances in Exploration Geophysics)

Global Optimization Methods in Geophysical Inversion (Advances in Exploration Geophysics) Review


See more picture


Global Optimization Methods in Geophysical Inversion (Advances in Exploration Geophysics) Feature

One of the major goals of geophysical inversion is to find earth models that explain the geophysical observations. Thus the branch of mathematics known as optimization has found significant use in many geophysical applications.

Both local and global optimization methods are used in the estimation of material properties from geophysical data. As the title of the book suggests, the aim of this book is to describe the application of several recently developed global optimization methods to geophysical problems.

• The well known linear and gradient based optimization methods have been summarized in order to explain their advantages and limitations

• The theory of simulated annealing and genetic algorithms have been described in sufficient detail for the readers to understand the underlying fundamental principles upon which these algorithms are based

• The algorithms have been described using simple flow charts (the algorithms are general and can be applied to a wide variety of problems

Students, researchers and practitioners will be able to design practical algorithms to solve their specific geophysical inversion problems. The book is virtually self-contained so that there are no prerequisites, except for a fundamental mathematical background that includes a basic understanding of linear algebra and calculus.


Check price now


Rerate Products


Customer Review

Tuesday, April 19, 2011

Tradeoffs and Optimization in Analog CMOS Design

Tradeoffs and Optimization in Analog CMOS Design Review


See more picture


Tradeoffs and Optimization in Analog CMOS Design Feature

Analog CMOS integrated circuits are in widespread use for communications, entertainment, multimedia, biomedical, and many other applications that interface with the physical world. Although analog CMOS design is greatly complicated by the design choices of drain current, channel width, and channel length present for every MOS device in a circuit, these design choices afford significant opportunities for optimizing circuit performance.

This book addresses tradeoffs and optimization of device and circuit performance for selections of the drain current, inversion coefficient, and channel length, where channel width is implicitly considered. The inversion coefficient is used as a technology independent measure of MOS inversion that permits design freely in weak, moderate, and strong inversion. 

This book details the significant performance tradeoffs available in analog CMOS design and guides the designer towards optimum design by describing:

  • An interpretation of MOS modeling for the analog designer, motivated by the EKV MOS model, using tabulated hand expressions and figures that give performance and tradeoffs for the design choices of drain current, inversion coefficient, and channel length; performance includes effective gate-source bias and drain-source saturation voltages, transconductance efficiency, transconductance distortion, normalized drain-source conductance, capacitances, gain and bandwidth measures, thermal and flicker noise, mismatch, and gate and drain leakage current
  • Measured data that validates the inclusion of important small-geometry effects like velocity saturation, vertical-field mobility reduction, drain-induced barrier lowering, and inversion-level increases in gate-referred, flicker noise voltage
  • In-depth treatment of moderate inversion, which offers low bias compliance voltages, high transconductance efficiency, and good immunity to velocity saturation effects for circuits designed in modern, low-voltage processes
  • Fabricated design examples that include operational transconductance amplifiers optimized for various tradeoffs in DC and AC performance, and micropower, low-noise preamplifiers optimized for minimum thermal and flicker noise
  • A design spreadsheet, available at the book web site, that facilitates rapid, optimum design of MOS devices and circuits 

Tradeoffs and Optimization in Analog CMOS Design is the first book dedicated to this important topic. It will help practicing analog circuit designers and advanced students of electrical engineering build design intuition, rapidly optimize circuit performance during initial design, and minimize trial-and-error circuit simulations. 


Check price now


Rerate Products


Customer Review